Polytech-soft.com

ПК журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Глобальная сеть интернет протоколы

Основные протоколы сети Интернет

В основном в сети Интернет используется семейство протоколов TCP/IP. Рассмотрим более подробно структуру протоколов TCP/IP с точки зрения модели OSI.
На канальном и физическом уровнях модели OSI TCP/IP поддерживает многие из существующих стандартов, определяющих среду передачи данных. Это могут быть, например, технологии Ethernet и FDDI для локальных компьютерных сетей или Х.25 и ISDN для организации крупных территориальных сетей. На этом уровне также могут использоваться протоколы РРР и SLIP, предназначенные для установления соединения с использованием аналоговых линий связи.
Основой семейства протоколов TCP/IP является сетевой уровень, представленный протоколом IP, а также различными протоколами маршрутизации. Этот уровень предоставляет адресное пространство, обеспечивает перемещение пакетов в сети, а также управляет их маршрутизацией.
Размеры пакета, параметры передачи, контроль целостности осуществляются на транспортном уровне протоколом TCP. Протокол UDP работает на том же уровне, но применяется в том случае, когда требования к надежности передачи данных менее жесткие.
Прикладной уровень объединяет все службы, которые система предоставляет пользователю. К наиболее важным прикладным протоколам относятся протокол удаленного управления telnet, протокол передачи файлов FTP, протокол передачи гипертекста HTTP, протоколы для работы с электронной почтой: SMTP, POP, ШАР и MIME. На этом уровне работает система доменных имен DNS, отвечающая за преобразование числовых IP-адресов в имена. Кроме того, следует отметить протокол SNMP, предназначенный для управления сетевыми устройствами.

11.2.1 . Адресация в сети Интернет
Каждый компьютер, включенный в сеть Интернет, имеет уникальный IP-адрес, на основании которого протокол IP передает пакеты в сети. IP-адрес состоит из четырех байтов и записывается в виде четырех десятичных чисел, разделенных точками, например:
194.85.120.66
IP-адрес состоит из двух логических частей: номера сети и номера узла в сети. Если сеть, в которую включен компьютер пользователя, является частью Интернета, то номер сети выдает специальное подразделение Интернета — InterNIC (Internet Network Information Center) или его представители. Номер узла определяет администратор сети.
В зависимости от того, какое количество байтов в IP-адресе выделяется для номера сети и номера узла, выделяют несколько классов IP-адресов.
Если номер сети занимает один байт, а номер узла три байта, то такой адрес относится к классу А. Количество узлов в сети класса А может достигать 224, или 16 777 216. Номер сети класса А меняется в диапазоне от 1.0.0.0 до 126.0.0.0. Если под номер сети и номер узла отводится по два байта, то адрес принадлежит к классу В. Количество возможных узлов в сети класса В составляет 216, или 65536 узлов. Номер сети класса В меняется от 128.0.0.0 до 191.255.0.0.
Если под номер сети отводится три байта, то адрес принадлежит к классу С. Количество узлов в сети класса С ограничено 28, или 256. Номер сети меняется от 192.0.1.0 до 223.255.255.0.
Например, в IP-адресе 194.85.120.66, 0.0.0.66 — это номер узла в сети класса С с номером 194.85.120.0.
Существует несколько специальных IP-адресов. Так, например, адрес 127.0.0.1 определяет локальную машину пользователя и используется для тестирования различных программ. При этом данные по сети не передаются.

11.2.2. Протокол IP
Протокол IP представляет собой основу протоколов TCP/IP. Протокол IP относится к типу протоколов без установления соединения, то есть — никакой управляющей информации кроме той, что содержится в самом IP-пакете, по сети не передается. Кроме того, протокол IP не гарантирует надежной доставки сообщений.
Поток данных протокол IP разбивает на определенные части — дейтаграммы и рассматривает каждую дейтаграмму как независимую единицу, не имеющую связи с другими дейтаграммами. Дейтаграмма — общее название единицы данных, которыми оперируют протоколы без установления соединения. Основной задачей протокола IP является передача дейтаграмм между сетями. Часто дейтаграммы, передаваемые с помощью протокола IP, называют IP-пакетами.

11.2.3. Протокол TCP/IP
Так как протокол IP не гарантирует надежную доставку сообщений, эту задачу решает протокол TCP. В отличие от протокола IP, протокол TCP устанавливает логическое соединение между взаимодействующими процессами. Перед передачей данных посылается запрос на начало сеанса передачи, получателем посылается подтверждение.
Надежность протокола TCP заключается в том, что источник данных повторяет их посылку в том случае, если не получит в определенный промежуток времени от адресата подтверждения их успешного получения. Части, на которые протокол TCP разбивает поток данных, принято называть сегментами,
Каждый сегмент предваряется заголовком. В заголовке сегмента существует поле контрольной суммы. Если при пересылке данные повреждены, то по контрольной сумме протокол TCP может это определить. Поврежденный сегмент уничтожается, а источнику ничего не посылается. Если данные не были повреждены, то они пропускаются на сборку сообщения приложения, а источнику отправляется подтверждение.
Для транспортировки сегментов протокол TCP использует протокол IP. Перед отправкой протокол TCP помещает сегменты в оболочку IP-пакета.

11.2.4. Порты и соединения
Задача протокола TCP заключается в передаче данных между любыми прикладными процессами, выполняющимися на компьютерах в сети. На каждом компьютере может выполняться одновременно несколько процессов. Для того чтобы доставить сообщение определенному процессу, необходимо каким-то образом идентифицировать его среди других. Идентификатор процесса носит название номера порта. Номер порта и IP-адрес компьютера однозначно определяют процесс, работающий в сети. Набор этих параметров называется сокет.
За некоторыми процессами номера портов закреплены. Так, например, порт 21 закреплен за службой удаленного доступа к файлам FTP, порт 23 — за службой удаленного управления telnet.
Для организации надежной передачи данных предусматривается установление логического соединения между прикладными процессами, которое определяется парой сокетов взаимодействующих процессов. В процессе соединения осуществляется подтверждение правильности приема сообщений и при необходимости выполняется повторная передача.

Основные протоколы сети Internet

Сетевой протокол – набор правил и соглашений, используемый при передаче данных между компьютерами в сети.

Как известно, компьютеры работают под управлением различных операционных систем. Для обеспечения корректного взаимодействия в компьютерных сетях разработан специальный стандарт, включающий несколько уровней сетевых протоколов (всего выделяют семь уровней). На прикладном уровне работает пользователь компьютерной сети, создавая конкретный документ для последующей передачи его по сети. На транспортном уровне документ преобразуется таким образом, чтобы можно было быстро и надежно передать его по линиям связи. Сетевой уровень отвечает за выбор маршрута и доставку документа по конкретному адресу. На физическом уровне происходит реальная передача данных

UDP (англ. User Datagram Protocol — протокол пользовательских датаграмм) — это транспортный протокол для передачи данных в сетях IP без установления соединения. Он является одним из самых простых протоколов транспортного уровня модели OSI. Его IP-идентификатор — 0x11.

В отличие от TCP, UDP не гарантирует доставку пакета, поэтому аббревиатуру иногда расшифровывают как Unreliable Datagram Protocol (протокол ненадёжных датаграмм). Это позволяет ему гораздо быстрее и эффективнее доставлять данные для приложений, которым требуется большая пропускная способность линий связи, либо требуется малое время доставки данных.

Transmission Control Protocol (TCP) (протокол управления передачей) — один из основных сетевых протоколов Интернета, предназначенный для управления передачей данных в сетях и подсетях TCP/IP.

Выполняет функции протокола транспортного уровня модели OSI.

TCP — это транспортный механизм, предоставляющий поток данных, с предварительной установкой соединения, за счёт этого дающий уверенность в достоверности получаемых данных, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета (см. также T/TCP). В отличие от UDP гарантирует, что приложение получит данные точно в такой же последовательности, в какой они были отправлены, и без потерь.

Читать еще:  Чем отличается жесткий диск от накопителя

Реализация TCP, как правило, встроена в ядро системы, хотя есть и реализации TCP в контексте приложения.

Когда осуществляется передача от компьютера к компьютеру через Интернет, TCP работает на верхнем уровне между двумя конечными системами, например, веб-обозреватель и веб-сервер. Также TCP осуществляет надежную передачу потока байтов от одной программы на некотором компьютере к другой программе на другом компьютере. Программы для электронной почты и обмена файлами используют TCP. TCP контролирует длину сообщения, скорость обмена сообщениями, сетевой трафик.

Стек протоколов TCP/IP (англ. Transmission Control Protocol/Internet Protocol) — набор сетевых протоколов разных уровней модели сетевого взаимодействия DOD, используемых в сетях. Протоколы работают друг с другом в стеке (англ. stack, стопка) — это означает, что протокол, располагающийся на уровне выше, работает «поверх» нижнего, используя механизмы инкапсуляции. Например, протокол TCP работает поверх протокола IP.

Стек протоколов TCP/IP основан на модели сетевого взаимодействия DOD и включает в себя протоколы четырёх уровней:

· уровня доступа к среде (network access).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

Уровни стека TCP/IP

Существуют разногласия в том, как вписать модель TCP/IP в модель OSI, поскольку уровни в этих моделях не совпадают.

К тому же, модель OSI не использует дополнительный уровень — «Internetworking» — между транспортным и сетевым уровнями. Примером спорного протокола может быть ARP или STP.

Вот как традиционно протоколы TCP/IP вписываются в модель OSI:

Распределение протоколов по уровням модели OSI
Прикладнойнапр., HTTP, SMTP, SNMP, RTP, FTP, Telnet, SSH, SCP, SMB, NFS, RTSP, BGP
Представительскийнапр., XDR, ASN.1, AFP, TLS, SSL
Сеансовыйнапр., ISO 8327 / CCITT X.225, RPC, NetBIOS, ASP
Транспортныйнапр., TCP, UDP, SCTP, SPX, ATP, DCCP, GRE
Сетевойнапр., IP, ICMP, IGMP, CLNP, OSPF, RIP, IPX, DDP, ARP, RARP
Канальныйнапр., Ethernet, Token ring, PPP, HDLC, X.25, Frame relay, ISDN, ATM, MPLS, Wi-Fi
Физическийнапр., электрические провода, радиосвязь, волоконно-оптические провода

Обычно в стеке TCP/IP верхние 3 уровня (прикладной, представительский и сеансовый) модели OSI объединяют в один — прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению. Упрощенно интерпретацию стека TCP/IP можно представить так:

Распределение протоколов по уровням модели TCP/IP
Прикладной «7 уровень»напр., HTTP, RTP, FTP, DNS (RIP, работающий поверх UDP, и BGP, работающий поверх TCP, являются частью сетевого уровня)
Транспортныйнапр., TCP, UDP, SCTP, DCCP (протоколы маршрутизации, подобные OSPF, что работают поверх IP, являются частью сетевого уровня)
СетевойДля TCP/IP это IP (IP) (вспомогательные протоколы, вроде ICMP и IGMP, работают поверх IP, но тоже относятся к сетевому уровню; протокол ARP является самостоятельным вспомогательным протоколом, работающим поверх физического уровня)
КанальныйEthernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS
Физическийнапр., физическая среда и принципы кодирования информации, T1, E1

Физический уровень

Физический уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

Канальный уровень

Канальный уровень описывает, каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности бит, определяющих начало и конец пакета данных). Ethernet, например, в полях заголовка пакета содержит указание того, какой машине или машинам в сети предназначен этот пакет.

Примеры протоколов канального уровня — Ethernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS.

PPP не совсем вписывается в такое определение, поэтому обычно описывается в виде пары протоколов HDLC/SDLC.

MPLS занимает промежуточное положение между канальным и сетевым уровнем и, строго говоря, его нельзя отнести ни к одному из них.

Канальный уровень иногда разделяют на 2 подуровня — LLC и MAC.

Сетевой уровень

Сетевой уровень изначально разработан для передачи данных из одной (под)сети в другую. Примерами такого протокола является X.25 и IPC в сети ARPANET.

С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны, например в протоколе ICMP (используется для передачи диагностической информации IP-соединения) и IGMP (используется для управления multicast-потоками).

ICMP и IGMP расположены над IP и должны попасть на следующий — транспортный — уровень, но функционально являются протоколами сетевого уровня, и поэтому их невозможно вписать в модель OSI.

Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число — уникальный IP-номер протокола. ICMP и IGMP имеют номера, соответственно, 1 и 2.

Транспортный уровень

Протоколы транспортного уровня могут решать проблему негарантированной доставки сообщений («дошло ли сообщение до адресата?»), а также гарантировать правильную последовательность прихода данных. В стеке TCP/IP транспортные протоколы определяют, для какого именно приложения предназначены эти данные.

Протоколы автоматической маршрутизации, логически представленные на этом уровне (поскольку работают поверх IP), на самом деле являются частью протоколов сетевого уровня; например OSPF (IP идентификатор 89).

TCP (IP идентификатор 6) — «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности. В этом его главное отличие от UDP.

UDP (IP идентификатор 17) протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов. В приложениях, требующих гарантированной передачи данных, используется протокол TCP.

UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.

И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

См. также: Список портов TCP и UDP.

Прикладной уровень

На прикладном уровне работает большинство сетевых приложений.

Эти программы имеют свои собственные протоколы обмена информацией, например, HTTP для WWW, FTP (передача файлов), SMTP (электронная почта), SSH (безопасное соединение с удалённой машиной), DNS (преобразование символьных имён в IP-адреса) и многие другие.

Читать еще:  Служба входа в сеть что это

В массе своей эти протоколы работают поверх TCP или UDP и привязаны к определённому порту, например:

· HTTP на TCP-порт 80 или 8080,

· FTP на TCP-порт 20 (для передачи данных) и 21 (для управляющих команд),

· SSH на TCP-порт 22,

· запросы DNS на порт UDP (реже TCP) 53,

· обновление маршрутов по протоколу RIP на UDP-порт 520.

Эти порты определены Агентством по выделению имен и уникальных параметров протоколов (IANA).

К этому уровню относятся: DHCP, Echo, Finger, Gopher, HTTP, HTTPS, IMAP, IMAPS, IRC, NNTP, NTP, POP3, POPS, QOTD, RTSP, SNMP, SSH, Telnet, XDMCP.

Вывод:Сетевой протокол — совокупность четко определенных правил: как запрашивать, оформлять и высылать по сети данную разновидность информации.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 9234 — | 7436 — или читать все.

Основные протоколы сети Интернет

Протокол — это совокупность правил, в соответствии с которыми происходит передача информации через сеть.

Основные протоколы, используемые в работе Интернет:

TCP/IP

В качестве основного протокола сетевого уровня в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей. Протокол TCP обеспечивает устойчивое виртуальное соединение между удаленными прикладными процессами.

На самом деле TCP/IP является целым набором протоколов, работающих совместно. Он состоит из двух уровней. Протокол верхнего уровня, TCP, отвечает за правильность преобразования сообщений в пакеты информации, из которых на приемной стороне собирается исходное послание. Протокол нижнего уровня, IP, отвечает за правильность доставки сообщений по указанному адресу. Иногда пакеты одного сообщения могут доставляться разными путями.

HTTP

Протокол HTTP (Hypertext Transfer Protocol — Протокол передачи гипертекста) является протоколом более высокого уровня по отношению к протоколу TCP/IP — протоколом уровня приложения. HTTP был разработан для эффективной передачи по Интернету Web-страниц. Именно благодаря HTTP мы имеем возможность просматривать страницы Сети. Протокол HTTP является основой системы World Wide Web.

Вы отдаете команды HTTP, используя интерфейс браузера, который является HTTP-клиентом. При щелчке мышью на ссылке браузер запрашивает у Web-сервера данные того ресурса, на который указывает ссылка.

Чтобы текст, составляющий содержимое Web-страниц, отображался на них определенным образом — в соответствии с замыслом создателя страницы — он размечается с помощью особых текстовых меток — тегов языка разметки гипертекста (HyperText Markup Language, HTML). Адреса ресурсов Интернета выглядит примерно следующим образом: http://www.tut.by

FTP

Протокол FTP (File Transfer Protocol — Протокол передачи файлов по Интернету. Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений — TCP.

TELNET

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленной ЭВМ.

С помощью этого протокола вы можете подключиться к удаленному компьютеру как пользователь и производить действия над его файлами и приложениями точно так же, как если бы работали на своем компьютере. Работа с ним ведется из командной строки. Telnet-клиент поставляется, например, в комплекте Windows 98.

WAIS

WAIS (Wide-Area Information Servers). Этот протокол был разработан для поиска информации в базах данных. Информационная система WAIS представляет собой систему распределенных баз данных, где отдельные базы данных хранятся на разных серверах. Сведения об их содержании и расположении хранятся в специальной базе данных — каталоге серверов. Просмотр информационных ресурсов осуществляется с помощью программы — клиента WAIS.

Поиск информации ведется по ключевым словам, которые задает пользователь. Эти слова вводятся для определенной базы данных, и система находит все соответствующие им фрагменты текста на всех серверах, где располагаются данные этой базы. Результат представляется в виде списка ссылок на документы с указанием того, насколько часто встречается в данном документе искомое слово и все искомые слова в совокупности. Адрес ресурса WAIS в Интернете выглядит примерно так: wais://site.edu

Gorpher

Протокол Gopher — протокол уровня приложения, разработанный в 1991 году. До повсеместного распространения гипертекстовой системы World Wide Web Gopher использовался для извлечения информации (в основном текстовой) из иерархической файловой структуры. Gopher был провозвестником WWW, позволявшим с помощью меню передвигаться от одной страницы к другой, постепенно сужая круг отображаемой информации. Программы-клиенты Gopher имели текстовый интерфейс. Однако пункты меню Gopher могли указывать и не только на текстовые файлы, но также, например, на telnet-соединения или базы данных WAIS. Современные Web-браузеры поддерживают этот протокол. Адреса информационных ресурсов Gopher имеют примерно следующий вид: gopher://gopher.tc.umn.edu

WAP

WAP (Wireless Application Protocol) был разработан в 1997 году группой компаний Ericsson, Motorola, Nokia и Phone.com для того, чтобы предоставить доступ к службам Интернета пользователям беспроводных устройств, использующих различные стандарты связи. Набрав на вашем мобильном телефоне адрес нужной Web-страницы, вы можете увидеть ее (в упрощенном виде) прямо на дисплее телефона.

Система доменных имен DNS

DNS (англ. Domain Name System — система доменных имён) — компьютерная распределённая система для получения информации о доменах. Чаще всего используется для получения IP-адреса по имени хоста (компьютера или устройства), получения информации о маршрутизации почты, обслуживающих узлах для протоколов в домене (SRV-запись).

Распределённая база данных DNS поддерживается с помощью иерархии DNS-серверов, взаимодействующих по определённому протоколу.

DNS важна для работы Интернета, так как для соединения с узлом необходима информация о его IP-адресе, а для людей проще запоминать буквенные (обычно осмысленные) адреса, чем последовательность цифр IP-адреса. В некоторых случаях это позволяет использовать виртуальные серверы, например, HTTP-серверы, различая их по имени запроса. Первоначально преобразование между доменными и IP-адресами производилось с использованием специального текстового файла hosts, который составлялся централизованно и автоматически рассылался на каждую из машин в своей локальной сети. С ростом Сети возникла необходимость в эффективном, автоматизированном механизме, которым и стала DNS.

DNS была разработана Полом Мокапетрисом в 1983 году.

Ключевыми понятиями DNS являются:

Доме́н (англ. domain — область) — узел в дереве имён, вместе со всеми подчинёнными ему узлами (если таковые имеются), то есть именованная ветвь или поддерево в дереве имен. Структура доменного имени отражает порядок следования узлов в иерархии; доменное имя читается слева направо от младших доменов к доменам высшего уровня (в порядке повышения значимости), корневым доменом всей системы является точка (‘.’), ниже идут домены первого уровня (географические или тематические), затем — домены второго уровня, третьего и т. д. (например, для адреса ru.wikipedia.org домен первого уровня — org, второго wikipedia, третьего ru). На практике точку в конце имени часто опускают, но она бывает важна в случаях разделения между относительными доменами и FQDN.

Поддомен (англ. subdomain) — подчинённый домен (например, wikipedia.org — поддомен домена org, а ru.wikipedia.org — домена wikipedia.org). Теоретически такое деление может достигать глубины 127 уровней, а каждая метка может содержать до 63 символов, пока общая длина вместе с точками не достигнет 254 символов. Но на практике регистраторы доменных имён используют более строгие ограничения. Например, если у вас есть домен вида mydomain.ru, вы можете создать для него различные поддомены вида mysite1.mydomain.ru, mysite2.mydomain.ru и т. д.

Читать еще:  Как создать сеть между 2 ноутбуками

Ресурсная запись — единица хранения и передачи информации в DNS. Каждая ресурсная запись имеет имя (то есть привязана к определенному Доменному имени, узлу в дереве имен), тип и поле данных, формат и содержание которого зависит от типа.

Зона — часть дерева доменных имен (включая ресурсные записи), размещаемая как единое целое на некотором сервере доменных имен, а чаще — одновременно на нескольких серверах. Целью выделения части дерева в отдельную зону является передача ответственности за соответствующий домен другому лицу или организации. Это называется делегированием. Как связная часть дерева, зона внутри тоже представляет собой дерево. Если рассматривать пространство имен DNS как структуру из зон, а не отдельных узлов/имен, тоже получается дерево; оправданно говорить о родительских и дочерних зонах, о старших и подчиненных. На практике, большинство зон 0-го и 1-го уровня (‘.’, ru, com, …) состоят из единственного узла, которому непосредственно подчиняются дочерние зоны. В больших корпоративных доменах (2-го и более уровней) иногда встречается образование дополнительных подчиненных уровней без выделения их в дочерние зоны.

Делегирование — операция передачи ответственности за часть дерева доменных имен другому лицу или организации. За счет делегирования в DNS обеспечивается распределенность администрирования и хранения. Технически делегирование выражается в выделении этой части дерева в отдельную зону, и размещении этой зоны на DNS-сервере, управляемом этим лицом или организацией. При этом в родительскую зону включаются «склеивающие» ресурсные записи, содержащие указатели на DNS-сервера дочерней зоны, а вся остальная информация, относящаяся к дочерней зоне, хранится уже на DNS-серверах дочерней зоны.

DNS-сервер — это специализированное ПО для обслуживания DNS, а также компьютер, на котором это ПО выполняется. DNS-сервер может быть ответственным за некоторые зоны и/или может перенаправлять запросы вышестоящим серверам.

DNS-клиент — это специализированная библиотека (или программа) для работы с DNS. В ряде случаев DNS-сервер выступает в роли DNS-клиента.

Авторитетность — признак размещения зоны на DNS-сервере. Ответы DNS-сервера могут быть двух типов: авторитетные (когда сервер заявляет, что сам отвечает за зону) и неавторитетные, когда сервер обрабатывает запрос, и возвращает ответ других серверов. В некоторых случаях вместо передачи запроса дальше DNS-сервер может вернуть уже известное ему (по запросам ранее) значение (режим кеширования).

DNS-запрос — запрос от клиента (или сервера) серверу.

Система DNS содержит иерархию DNS-серверов, соответствующую иерархии зон. Каждая зона поддерживается как минимум одним авторитетным сервером DNS, на котором расположена информация о домене.

Имя и IP-адрес не тождественны — один IP-адрес может иметь множество имён, что позволяет поддерживать на одном компьютере множество веб-сайтов (это называется виртуальный хостинг). Обратное тоже справедливо — одному имени может быть сопоставлено множество IP-адресов: это позволяет создавать балансировку нагрузки.

Для повышения устойчивости системы используется множество серверов, содержащих идентичную информацию, а в протоколе есть средства, позволяющие поддерживать синхронность информации, расположенной на разных серверах. Существует 13 корневых серверов, их адреса практически не изменяются. Протокол DNS использует для работы TCP- или UDP-порт для ответов на запросы. Традиционно запросы и ответы отправляются в виде одной UDP датаграммы. TCP используется для AXFR-запросов.

Протоколы TCP/IP простым языком

Протоколы TCP/IP основа работы глобальной сети Интернет. Если быть более точным, то TCP/IP это список или стек протоколов, а по сути, набор правил по которым происходит обмен информации (реализуется модель коммутации пакетов).

В этой статье разберем принципы работы стека протоколов TCP/IP и попробуем понять принципы их работы.

Примечание: Зачастую, аббревиатурой TCP/IP называют всю сеть, работающую на основе этих двух протоколов, TCP и IP.

В модель такой сети кроме основных протоколов TCP (транспортный уровень) и IP (протокол сетевого уровня) входят протоколы прикладного и сетевого уровней (смотри фото). Но вернемся непосредственно к протоколам TCP и IP.

Что такое протоколы TCP/IP

TCP — Transfer Control Protocol. Протокол управления передачей. Он служит для обеспечения и установление надежного соединения между двумя устройствами и надежную передачу данных. При этом протокол TCP контролирует оптимальный размер передаваемого пакета данных, осуществляя новую посылку при сбое передачи.

IP — Internet Protocol. Интернет протокол или адресный протокол — основа всей архитектуры передачи данных. Протокол IP служит для доставки сетевого пакета данных по нужному адресу. При этом информация разбивается на пакеты, которые независимо передвигаются по сети до нужного адресата.

Форматы протоколов TCP/IP

Формат IP протокола

Существуют два формата для IP адресов IP протокола.

Формат IPv4. Это 32-битовое двоичное число. Удобная форма записи IP-адреса (IPv4) это запись в виде четырёх групп десятичных чисел (от 0 до 255), разделённых точками. Например: 193.178.0.1.

Формат IPv6. Это 128-битовое двоичное число. Как правило, адреса формата IPv6 записываются в виде уже восьми групп. В каждой группе по четыре шестнадцатеричные цифры разделенные двоеточием. Пример адреса IPv6 2001:0db8:85a3:08d3:1319:8a2e:0370:7889.

Как работают протоколы TCP/IP

Если удобно представьте передаче пакетов данных в сети, как отправку письма по почте.

Если неудобно, представьте два компьютера соединенных сетью. Причем сеть соединения может быть любой как локальной, так и глобальной. Разницы в принципе передачи данных нет. Компьютер в сети также можно считать хостом или узлом.

Протокол IP

Каждый компьютер в сети имеют свой уникальный адрес. В глобальной сети Интернет, компьютер имеет этот адрес, который называется IP-адрес (Internet Protocol Address).

По аналогии с почтой, IP- адрес это номер дома. Но номера дома для получения письма недостаточно.

Передаваемая по сети информация передается не компьютером, как таковым, а приложениями, установленными на него. Такими приложениями являются сервер почты, веб-сервер, FTP и т.п. Для идентификации пакета передаваемой информации, каждое приложение прикрепляется к определенному порту. Например: веб-сервер слушает порт 80, FTP слушает порт 21, почтовый SMTP сервер слушает порт 25, сервер POP3 читает почту почтовых ящиков на порте 110.

Таким образом, в адресном пакете в протоколе TCP/IP, в адресатах появляется еще одна строка: порт. Аналог с почтой — порт это номер квартиры отправителя и адресата.

Source address (Адрес отправителя):

Destination address (Адресполучателя):

Стоит запомнить: IP адрес + номер порта — называется «сокет». В примере выше: с сокета 82.146.47.66:2049 пакет отправляется на сокет 195.34.31.236: 53.

Протокол TCP

Протокол TCP это протокол следующего после протокола IP уровня. Предназначен этот протокол для контроля передачи информации и ее целостности.

Например, Передаваемая информация разбивается на отдельные пакеты. Пакеты доставят получателю независимо. В процессе передачи один из пакетов не передался. Протокол TCP обеспечивает повторные передачи, до получения этого пакета получателем.

Транспортный протокол TCP скрывает от протоколов высшего уровня (физического, канального, сетевого IP все проблемы и детали передачи данных).

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector