Polytech-soft.com

ПК журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Иерархическая сеть это

Иерархические сети

В иерархических локальных сетях имеется один или несколько специальных компьютеров-серверов, на которых хранится информация, совместно используемая различными пользователями.

Сервер в иерархических сетях — это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более). Компьютеры, с которых осуществляется доступ к информации на сервере, называются станциями или клиентами. ЛВС классифицируются по назначению:

1. Сети терминального обслуживания. В них включается ПК и периферийное оборудование, которое может использоваться в монопольном режиме самим компьютером, к которому оно подключается, или быть общесетевым ресурсом.

2. Сети, на базе которых построены системы управления производством и учрежденческой деятельности. Они объединяются группой стандартов MAP/TOP. В MAP описываются стандарты, используемые в промышленности. ТОР описывают стандарты для сетей, применяемых в офисных сетях.

3. Сети, которые объединяют системы автоматизации, проектирования. Рабочие станции таких сетей обычно базируются на достаточно мощных персональных ЭВМ, например фирмы Sun Microsystems.

4. Сети, на базе которых построены распределенные вычислительные системы. По классификационному признаку локальные компьютерные сети делятся на кольцевые, шинные, звездообразные, древовидные.

По признаку скорости — на низкоскоростные (до 10 Мбит/с), среднескоростные (до 100

Мбит/с), высокоскоростные (свыше 100 Мбит/с). По типу метода доступа — на случайные, пропорциональные, гибридные. По типу физической среды передачи — на витую пару, коаксиальный или оптоволоконный кабель, инфракрасный канал, радиоканалc2k.

Рис. 6. Топология типа «шина»

В этом смысле топология «звезда» более устойчива. Поврежденный кабель — проблема для одного конкретного компьютера, на работе сети в целом это не сказывается. Не требуется усилий по локализации неисправности.

Рис. 7. Топология типа «звезда»

В сети, имеющей структуру типа «кольцо», информация передается между станциями по кольцу с переприемом в каждом сетевом контроллере. Переприем производится через буферные накопители, выполненные на базе оперативных запоминающих устройств, поэтому при выходе из строя одного сетевого контроллера может нарушиться работа всего кольца.

Рис. 8. Топология типа «кольцо»

Достоинство кольцевой структуры — простота реализации устройств, а недостаток — низкая надежность. В настоящее время практически не используется. Все рассмотренные структуры иерархические. Однако благодаря использованию мостов (специальных устройств, объединяющих локальные сети с разной структурой) из вышеперечисленных типов структур могут быть построены сети со сложной иерархической структурой.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 11313 — | 7594 — или читать все.

Одноранговые и иерархические сети: в чем отличие?

Все существующие локальные сети по своей архитектуре подразделяются на одноранговые и иерархические (или сети с выделенным сервером). В сегодняшней статье мы рассмотрим их особенности, преимущества и недостатки.

Одноранговые сети

Одноранговая сеть представляет собой сеть равноправных компьютеров – рабочих станций, каждая из которых имеет уникальное имя и адрес. Все рабочие станции объединяются в рабочую группу. В одноранговой сети нет единого центра управления – каждая рабочая станция сети может отвечать на запросы других компьютеров, выступая в роли сервера, и направлять свои запросы в сеть, играя роль клиента.

Пример одноранговой сети

Одноранговые сети являются наиболее простым для монтажа и настройки, а также дешевым типом сетей. Для построения одноранговой сети требуется всего лишь несколько компьютеров с установленными клиентскими ОС, и снабженных сетевыми картами. Все параметры безопасности определяются исключительно настройками каждого из компьютеров.

К основным достоинствам одноранговых сетей можно отнести:

  • простоту работы в них;
  • низкую стоимость, поскольку все компьютеры являются рабочими станциями;
  • относительную простоту администрирования.

Недостатки одноранговой архитектуры таковы:

  • эффективность работы зависит от количества компьютеров в сети;
  • защита информации и безопасность зависит от настроек каждого компьютера.

Серьезной проблемой одноранговой сетевой архитектуры является ситуация, когда компьютеры отключаются от сети. В этих случаях из сети исчезают все общесетевые сервисы, которые они предоставляли (например, общая папка на диске отключенного компьютера, или общий принтер, подключенный к нему).
Администрировать такую сеть достаточно просто лишь при небольшом количестве компьютеров. Если же число рабочих станций, допустим, превышает 25-30 – то это будет вызывать определенные сложности.

Иерархические сети

В иерархических сетях выделяется один или несколько специальных компьютеров – серверов. Серверы обычно представляют собой высокопроизводительные ПК с серверной операционной системой (например, Windows Server 2003 или Windows Server 2008), отказоустойчивыми дисковыми массивами и системой защиты от сбоев. Как правило, на этих компьютерах локальные пользователи не работают, поэтому принято говорить о выделенном сервере. Серверы управляют сетью и хранят информацию, которую совместно используют остальные компьютеры сети. Компьютеры, с которых осуществляется доступ к информации на сервере, называются клиентами.

Пример иерархической сети

По-настоящему иерархической сеть становится тогда, когда в ней задействуются службы Active Directory и создается домен Windows. Попробую остановиться на этом подробнее:

Читать еще:  Лучший переносной жесткий диск

Дело в том, что на локальном компьютере – изолированном, или входящем в одноранговую сеть, все учетные записи пользователей и настройки доступа хранятся на самом компьютере. Конкретнее, учетные записи и параметры безопасности хранятся в реестре, а права доступа к файлам – в файловой системе NTFS.
А в иерархической сети один из компьютеров назначается сервером – контроллером домена. На этом компьютере может работать только серверная ОС. Именно этот сервер хранит все учетные записи пользователей и групп и параметры безопасности. Все остальные компьютеры присоединяются к домену. После присоединения изменяется сам принцип входа пользователей в систему. Теперь при входе пользователей в систему каждый компьютер должен запросить и получить разрешение у контроллера домена. Сеть становится доменом Windows. Ее можно присоединить к домену старшего уровня, и так далее – образуется иерархическая древовидная структура.

Таким образом, в одноранговой сети вполне могут работать разные серверы – например, файловый сервер; прокси-сервер, через который осуществляется общий доступ к интернету; сервер печати и т.д. Иерархической сеть делает лишь развертывание в ней домена Windows и служб активного каталога (Active Directory) .

С точки зрения системного администрирования, сеть с выделенным сервером хотя и более сложная в создании и обслуживании, но в то же время наиболее управляемая и контролируемая.

Иерархические сети обладают рядом преимуществ по сравнению с одноранговыми:

  • выход из строя рабочих станций никак не сказывается на работоспособности сети в целом;
  • проще организовать локальные сети с большим количеством рабочих станций;
  • администрирование сети осуществляется централизованно — с сервера;
  • обеспечивается высокий уровень безопасности данных.

Тем не менее, клиент-серверной архитектуре присущ ряд недостатков:

  • неисправность или сбой единственного сервера может парализовать всю сеть;
  • наличие выделенных серверов повышает общую стоимость сети;
  • it-персонал должен обладать достаточными знаниями и навыками администрирования домена.

Выбор архитектуры сети зависит от специфики организации, назначения сети и количества рабочих станций. От выбора типа сети зависит также и ее дальнейшее будущее: расширяемость, возможность использования того или иного ПО и оборудования, надежность сети и многое другое.

Иерархическая модель сети

Коммутация третьего уровня способствовала распространению структурированных сетей.

B последние годы специалисты в области локальных сетей все чаще склоняются к тому, что сети с сотнями, тысячами или даже десятками тысяч узлов должны быть структурированы в соответствии с иерархической моделью, превосходство которой перед плоской, неиерархической, моделью кажется убедительным.

Казалось бы, после замены медленных маршрутизаторов на более производительные коммутаторы третьего уровня ничто больше не сможет помешать распространению этой модели. Однако удешевление коммутаторов способствует выбору в пользу решений полностью на базе второго уровня. Преимущества структурированных сетей при этом игнорируются.

ПРЕИМУЩЕСТВА ИЕРАРХИЧЕСКОЙ МОДЕЛИ

В иерархической модели вся сеть делится на несколько уровней, работа с которыми производится по отдельности. Это весьма облегчает постановку задач при проектировании, поскольку каждый отдельный уровень можно реализовать в соответствии со специфическими требованиями определенной области охвата. Уменьшение размеров подсетей позволяет добиться снижения числа коммуникационных связей каждого конечного устройства. Так, например, широковещательные «штормы» быстро растут вместе с увеличением числа систем в плоской сети.

Ответственность за обслуживание отдельных подобластей сетевого дерева в иерархической модели легко делегируется без каких-либо серьезных проблем с интерфейсом, что невозможно в случае плоской сети. Кроме того, наглядность сетевой структуры в случае иерархической модели также оправдывает себя при поиске ошибок. При иерархическом построении сети различного рода изменения реализовать гораздо проще, поскольку, как правило, они затрагивают лишь часть системы. В плоской же модели они способны повлиять на всю сеть. Это обстоятельство значительно упрощает наращивание иерархических сетей: оно реализуется добавлением новой сетевой области к существующему уровню или следующего уровня без необходимости перекройки всей структуры.

ОТ МАРШРУТИЗАЦИИ К КОММУТАЦИИ НА ТРЕТЬЕМ УРОВНЕ

Долгое время успешному распространению иерархической схемы построения сети мешали высокая стоимость и низкая производительность имеющихся устройств. Классические маршрутизаторы не могли соперничать с коммутаторами второго уровня ни по скорости передачи пакетов, ни по стоимости портов. Реализация необходимой комбинации маршрутизации и коммутации второго уровня на практике оказалась проблематичной. Поэтому на многих предприятиях выбор для коммуникаций в пределах подсетей IP или виртуальных локальных сетей (Virtual Local Area Network, VLAN) был сделан в пользу комбинированной коммутации кадров второго уровня и АТМ. Между тем высокопроизводительного оборудования для коммуникаций по IP между виртуальными сетями не было. Оно наконец-то стало доступным с появлением коммутации на третьем уровне (с исправлением первоначальных недостатков ее можно теперь считать вполне зрелой).

Коммутаторы третьего уровня осуществляют маршрутизацию каждого пакета в отдельности с помощью специализированных интегральных схем (Applications Specific Integrated Circuit, ASIC), при этом они анализируют содержимое пакетов и принимают решения о выборе пути на основе информации с более высоких уровней. Коммуникация между VLAN происходит так же быстро, как и внутри, т. е. с максимальной пропускной способностью сети. На рынке уже появились продукты со скоростью передачи до 100 млн пакетов в секунду.

Читать еще:  Локальная вычислительная сеть

Замена имеющихся маршрутизаторов на коммутаторы третьего уровня осуществляется очень просто: заменить требуется только соответствующие устройства. Все навыки и потенциал ноу-хау, накопленный за годы эксплуатации маршрутизаторов, могут быть использованы в дальнейшей работе.

Коммутаторы второго и третьего уровней в настоящее время мало чем отличаются друг от друга в плане производительности, поэтому вопрос выбора типа устройства зависит — наряду с функциональностью — от стоимости портов. Вместе с тем, даже несмотря на заметное удешевление коммутаторов третьего уровня, простые коммутаторы второго уровня по-прежнему стоят намного меньше. Тем самым область применения первых — главным образом сетевые магистрали, а последних — рабочие группы.

ЧЕТКОЕ ЛОКАЛЬНОЕ ПОДЧИНЕНИЕ

Рисунок 1. Плоская сеть второго уровня.

Связанная с коммутацией второго уровня технология виртуальных локальных сетей появилась вследствие стремления свести к минимуму коммуникации между подсетями IP, поскольку они осуществляются по медленным соединениям с маршрутизаторами. Увеличить долю коммуникаций внутри VLAN и снизить таковую между VLAN можно путем отображения на виртуальные локальные сети подсетей IP и выделенных организационных структур. При этом одна и та же подсеть может распространяться на несколько зданий — как правило, для виртуальных локальных сетей география не имеет никакого значения.

Рисунок 2. Избыточная сеть второго/третьего уровня.

Коммутация третьего уровня все же дает шанс на последовательное претворение в жизнь иерархических принципов построения сети. Тем самым особое значение снова приобретает вопрос о так называемом плоском или иерархическом подходе. Логическая структура плоской неструктурированной сети соответствует представленной на Рисунке 1 схеме. Связь между местоположением конечных устройств и их IP-адресами отсутствует. Третий октет IP-адреса (на рисунке: «1», «2» или «3») не дает никакой информации о расположении конечного устройства.

Альтернативой может быть инфраструктура третьего уровня в ядре сети с подключенными коммутаторами второго уровня, возможно, так, как это представлено на Рисунке 2. Структурированная сеть соответствует изображенной на Рисунке 3 логической схеме, в которой отчетливо прослеживается зависимость между местоположением конечных устройств и их IP-адресами. Третий октет IP-адреса дает точную информацию о том, где находится конечное устройство. В четвертом и последнем октете указываются конкретные конечные устройства.

Рисунок 3. Логическая структура сети третьего уровня.

СТРУКТУРИРОВАННЫЕ СЕТИ ВТОРОГО/ТРЕТЬЕГО УРОВНЕЙ

При исследовании достоинств и недостатков рассматриваемых топологий все-таки можно найти один значительный позитивный аспект плоских сетей второго уровня: при перемещениях оборудования не требуется менять IP-адреса и не надо перенастраивать приложения, в которых IP-адреса используются в качестве идентификационных признаков.

Однако этому можно противопоставить целый ряд преимуществ структурированных сетей второго/третьего уровня:

  • отсутствие отрицательных последствий потенциального дублирования IP-адресов для всей сети в целом;
  • разделение доменов широковещательной рассылки и, тем самым, значительное снижение нагрузки на конечные устройства;
  • повсеместное соответствие адресов сетевого уровня зданиям и коммутаторам: «говорящие» адреса облегчают локализацию возникающих ошибок;
  • возможность реализации функций безопасности на границах между подсетями;
  • обеспечение нужного качества сервиса на сетевом и транспортном уровнях, например путем определения приоритета для некоторых приложений;
  • более эффективное управление широковещательными рассылками благодаря применению маршрутизации широковещательного трафика в коммутаторах третьего уровня;
  • значительное сокращение времени, необходимого для обеспечения сходимости при реализации избыточных соединений. К примеру, при первоочередном выборе кратчайшего маршрута (Open Shortest Path First, OSPF) для этого понадобится всего несколько секунд, в то время как протоколу Spanning Tree — от 40 до 50 с. На уровне подсетей IP в качестве механизма избыточности для маршрутизатора по умолчанию можно применять протокол маршрутизатора «горячего» резерва/виртуальный протокол избыточной маршрутизации (Hot Standby Router Protocol/Virtual Router Redundancy Protocol, HSRP/VRRP).

КОНКУРИРУЮЩИЕ ПОДХОДЫ К ДИЗАЙНУ

Структурированная сеть второго/третьего уровня, по-видимому, лучше всего подходит для обеспечения безопасной и стабильной работы даже в крупных сетях. К таким выводам приходят практически все архитекторы сетей, однако в последнее время немало приверженцев получают новый подход к дизайну сети, в основу которого положены исключительно коммутаторы второго уровня. Это связано с тем, что многие предприятия вынуждены искать возможности для уменьшения инвестиций, в том числе и в локальные сети.

Подобные концепции базируются преимущественно на применении недорогих коммутаторов второго уровня и заключаются в составлении из них, к примеру, кольцевой структуры. Механизм реализации избыточности в кольцевых структурах опирается на протокол Rapid Spanning Tree. Этот подход поддерживается стандартом IEEE 802.1w, где определена быстрая реконфигурация покрывающего дерева, целью разработки которого было сокращение до нескольких секунд времени сходимости протокола Spanning Tree, пользующегося за свою медлительность дурной славой.

Подобные «недорогие» схемы, где модель иерархической сетевой структуры остается за бортом, на первый взгляд выглядят привлекательными: экономия исчисляется в десятках процентов. Однако умеренный скепсис не повредит. Дешевые коммутаторы второго уровня должны иметь стабильные коды для поддержки Rapid Spanning Tree. Однако это кажется очень смелым предположением с учетом того, сколько времени потребовалось, чтобы исходный алгоритм стал работать более-менее стабильно. К тому же нельзя забывать, что малое значение времени сходимости при наличии избыточных соединений — всего лишь одна из причин, по которым применяется инфраструктура третьего уровня. А как же тогда «говорящие» IP-адреса, защита от ошибочно заданных адресов, сокращение широковещательного трафика и более эффективное управление широковещательным трафиком в сетях на третьем уровне?

Читать еще:  Вконтакте социальная сеть вход на страницу

При такой точке зрения ценовый аспект приобретает относительный характер, ведь, в конце концов, эти два подхода к сетевому дизайну нельзя сравнивать. Конечно же, полностью избыточный дизайн с топологией «двойная звезда» стоит гораздо больше каскадной структуры с недорогими компонентами. Впрочем, проект сети с применением устройств третьего уровня тоже можно несколько удешевить: вовсе не обязательно брать за основу аппаратное обеспечение «с избытком». Это поможет построить сеть третьего уровня и сэкономить при этом порядка 35% ее стоимости.

Бероц Моайери работает в Comconsult Beratung und Planung. С ним можно связаться по адресу: http://www.comconsult.com

Поделитесь материалом с коллегами и друзьями

Основы коммутации

Программное обеспечение коммутаторов

Программное обеспечение коммутаторов D-Link предоставляет набор программных сервисов, предназначенных для выполнения различных функций, обеспечивающих безопасность , отказоустойчивость сети, управление многоадресной рассылкой, качество обслуживания ( QoS ), а также развитые средства настройки и управления. Помимо этого, программное обеспечение коммутаторов взаимодействует с приложениями D-Link D-View v.6, представляющими собой прикладные программы сетевого управления. Эти управляющие программы поддерживаются всей линейкой управляемых коммутаторов D-Link.

Системное программное обеспечение располагается во Flash -памя-ти коммутатора, размер которой, в зависимости от модели, может быть до 32 Мбайт . Компания D-Link предоставляет возможность бесплатного обновления программного обеспечения коммутаторов по мере появления новых версий с обновленным функционалом.

Общие принципы сетевого дизайна

Грамотный сетевой проект основывается на многих принципах, базовыми из которых являются:

  • изучение возможных точек отказа сети. Для того чтобы единичный отказ не мог изолировать какой-либо из сегментов сети, в ней может быть предусмотрена избыточность. Под избыточностью понимается резервирование жизненно важных компонентов сети и распределение нагрузки. Так, в случае отказа в сети может существовать альтернативный или резервный путь к любому ее сегменту. Распределение нагрузки используется в том случае, если к пункту назначения имеется два или более пути, которые могут использоваться в зависимости от загруженности сети. Требуемый уровень избыточности сети меняется в зависимости от ее конкретной реализации;
  • определение типа трафика сети. Например, если в сети используются клиент-серверные приложения, то поток вырабатываемого ими трафика является критичным для эффективного распределения ресурсов, таких как количество клиентов, использующих определенный сервер, или количество клиентских рабочих станций в сегменте;
  • анализ доступной полосы пропускания. Например, в сети не должно быть большого различия в доступной полосе пропускания между различными уровнями иерархической модели (описание иерархической модели сети находится в следующем разделе). Важно помнить, что иерархическая модель ссылается на концептуальные уровни, которые обеспечивают функциональность;
  • создание сети на базе иерархической или модульной модели. Иерархия позволяет объединить через межсетевые устройства отдельные сегменты, которые будут функционировать как единая сеть. Фактическая граница между уровнями не обязательно должна проходить по физическому каналу связи — ею может быть и внутренняя магистраль определенного устройства.

Трехуровневая иерархическая модель сети

Иерархическая модель определяет подход к проектированию сетей и включает в себя три логических уровня ( рис. 1.20):

  • уровень доступа (access layer);
  • уровень распределения/ агрегации (distribution layer);
  • уровень ядра (core layer).

Для каждого уровня определены свои функции. Три уровня не обязательно предполагают наличие трех различных устройств. Если провести аналогию с иерархической моделью OSI , то в ней отдельный протокол не всегда соответствует одному из семи уровней. Иногда протокол соответствует более чем одному уровню модели OSI , а иногда несколько протоколов реализованы в рамках одного уровня. Так и при построении иерархических сетей, на одном уровне может быть как несколько устройств, так и одно устройство, выполняющее все функции, определенные на двух соседних уровнях.

Уровень ядра находится на самом верху иерархии и отвечает за надежную и быструю передачу больших объемов данных. Трафик, передаваемый через ядро , является общим для большинства пользователей. Сами пользовательские данные обрабатываются на уровне распределения, который, при необходимости, пересылает запросы к ядру.

Для уровня ядра большое значение имеет его отказоустойчивость , поскольку сбой на этом уровне может привести к потере связности между уровнями распределения сети.

Уровень распределения, который иногда называют уровнем рабочих групп, является связующим звеном между уровнями доступа и ядра. В зависимости от способа реализации уровень распределения может выполнять следующие функции:

  • обеспечение маршрутизации, качества обслуживания и безопасности сети;
  • агрегирование каналов;
  • переход от одной технологии к другой (например, от 100Base-TX к 1000Base-T).

Уровень доступа управляет доступом пользователей и рабочих групп к ресурсам объединенной сети. Основной задачей уровня доступа является создание точек входа/выхода пользователей в сеть . Уровень выполняет следующие функции:

Ссылка на основную публикацию
Adblock
detector